What is your name?: ___________________________

There are two sections:
 I. True/False. 72 points; (36 questions, 2 points each)
 II. Multiple Choice 28 points; (7 questions, 4 points each)

100 points total

This test is worth 10% of your final grade. Please fill in your answers on the bubble form. After the test you may keep these pages, but you must turn in your bubble form. This test is open book and open notes. You have 50 minutes.

• For the multiple choice problems, select the *best* answer for each one and select the appropriate letter on your answer sheet.
• Be careful - more than one answer may seem to be correct. Many questions are tricky.

• Some problems ask you to determine whether something is valid. Something is valid if it would not generate a compiler error and would execute without the program crashing.

I. True/False: (2 points each)

1. Java programs *must* have BlueJ to work. You can’t run a Java program without BlueJ.
 T F

2. A java class name should be the same as the filename in which it is found. For instance the Car class should be stored in Car.java
 T F

3. A single line comment using // can be safely nested inside a block style comment that uses /*...*/
 T F

4. To change your password on the UNIX system, you need to use the *password* command.
 T F

5. Multiple variables can be declared at one time, such as:
 int x,y,z;
 T F

6. Multiple variables can all be initialized on the same line, such as:
 x=y=z=0;
 T F

7. The output of the statements below is:
 int value = 5;
 System.out.println(value / 2);
 2.5 displays: 2
 T F

8. The output of the statements below is:
 int value = 5;
 System.out.println((float)value / 2);
 2.5
 T F

9. The output of the statements below is:
 int value = 5;
 System.out.println(1.0 * value / 2);
 2.5
10. The output of the statements below is: 2.5
 int value = 5;
 System.out.println(value / 2 * 1.0);

11. The output of the statements below is: 2.5
 double value = 5.0;
 System.out.println(value / 2);

12. The following statements are valid (compile and run) in Java:
 int x = 0;
 x = x + 1;

13. The following statements are valid (compile and run) in Java:
 int x = 0;
 x + 1 = x;

14. It is possible in Java to write one line of code that generates 3 lines of output.

15. It is possible in Java to write 3 lines of code that generates 1 line of output.

16. A convenient way to line up different magnitude numbers in a table involves using printf.

17. Multi-word variable names in Java should have the first letter of each word capitalized, except for the first word.

18. By convention, global constants must be in all capital letters in Java, otherwise the compiler will generate an error.

19. When creating an instance of the Scanner class, it must be called keyboard.

For the following 3 statements, tell whether or not each statement is valid (compiles & runs).

20. int while = true; valid because of upper-case L; however & is boolean.
21. char initials = "A"; should have single quotes
22. int pie = (int)6.28/2;

23. Consider writing multiple if-else-if statements to handle assigning a letter grade (e.g. 'A', or 'B') given a numerical grade (e.g. 93, or 82). The if-else-if statements should be indented inside the if statement above.

24. Consider writing multiple if-else-if statements to handle menu options. The if-else-if statements should be indented inside the if statement above.

25. The following statements compile and run in Java:
 String name = "Englebert";
 if (name == "Beagle Bert") {
 System.out.println("Are equal");
 }
 Compiles & runs, but doesn't do the String comparison, which would have required the equals("Eagle Bert") method call.
26. To check and see if the value of variable x is between 3 and 9 we could use:

```java
int x = 4;
if (3 < x < 9) {
    System.out.println("x is between 3 and 9");
}
```

27. The output of the statement below is:

```java
System.out.println( 8 % -3);
```

28. After running the code shown below, the value stored in variable x is:

```java
int y = 5;
int x = y * y++;
```

29. The output of the following lines of code is:

```java
boolean notDone = false;
if (notDone = true)
    System.out.println("not Done ");
if (notDone = false)
    System.out.println("Done ");
else
    System.out.println("Undecided ");
System.out.println("End");
```

30. The output of the program segment below is:

```java
String jumbo = "1";
String shrimp = "2";
System.out.println(jumbo + shrimp);
```

31. The output of the following statements is:

```java
int x = 2;
int y = 5;
System.out.println("" + x + y);
System.out.println(" Done");
```

32. The output of the following statements is:

```java
int x = 2;
int y = 5;
System.out.println( x + y + ");
System.out.println(" Done");
```

33. The following code is valid (compiles and runs) in Java:

```java
int x,y;
for( x=1, y=7; x<y; x++,y--)
    System.out.println(x*y);
```

34. The following code is valid (compiles and runs) in Java:

```java
for( ; ; ) {
    infinite loop, but it does compile & run
```
II. Multiple Choice (4 points each)

37. Consider the program segment given below. Its output is:

```java
for (int i=1; i<=100; i++) {
    System.out.printf("%4d", i);
    if (i%10 == 0) {
        System.out.println();
    }
}
```

a) All the numbers from 1 to 100, with a line break after the number 10
b) All the numbers from 1 to 100 in a grid of 10 rows and 10 columns
c) All the numbers from 1 to 101, 4 per row
d) All the numbers from 1 to 101, with a line break after every 10 numbers
e) None of the above

38. Consider the program segment given below. Its output is:

```java
String theWord = "MMiissiissiippii";
for (int i=0; i<theWord.length(); i=i+2) {
    System.out.print(theWord.charAt(i));
}
```

a) MMiissiissiippii
b) Mississippi
c) iippiissiissiMM
d) MMiissiissiippippiippiissiiMM
e) None of the above
39. Consider the code shown at right below, that uses the Circle class demonstrated during class. What does the output of this code look like?

a) A circle that grows larger as it moves to the right.
b) A circle that itself moves in a clockwise circle.
c) A circle that itself moves in a counter-clockwise circle.
d) A circle that moves in an outward growing spiral.
e) None of the above.

```java
public class picture {
    public static void main() {
        Circle firstCircle = new Circle();
        firstCircle.makeVisible();
        for (int i=1; i<31; i++) {
            firstCircle.slowMoveHorizontal(i*2);
            firstCircle.slowMoveVertical(i*2);
            firstCircle.slowMoveHorizontal((-i)*2);
            firstCircle.slowMoveVertical((-i)*2);
        }
    }
}
```

40. What is the output of the program segment shown at right below?

a) *

b) ************

 *

c) *

 *

d) *

 *

e) None of the above

```java
for( int i=1; i<=11; i++) {
    if( i < (11+1)/2) {
        for( int j=1; j<i*2; j++) {
            System.out.print('*');
        } // end for( int j...
    } else {
        for( int j=1; j<(11+1)-i*2; j++) {
            System.out.print('*');
        }
    }
    System.out.println();
} // end for( int i...
```
41. Consider method `first` shown at right. For positive numbers, how would you best describe its return value?

 a) \(\times y \)
 b) \(\times \times \)
 c) \(\times y \)
 d) \(\times y \)
 e) None of the above

42. Consider method `second` shown at right. For positive numbers, how would you best describe its return value?

 a) \(\times y \)
 b) \(\times \times \)
 c) \(\times y \)
 d) \(\times y \)
 e) None of the above

43. Consider the class given below, along with the driver class for it.

```java
class ClassA {
    private int x = 1;

    public void setValue(int val) {
        x = val + 1;
    }
}
//end ClassA

class ClassADriver {
    public void doIt() {
        int value = 7;
        ClassA instance1 = new ClassA();
        instance1.setValue(5);
        value = instance1.x;
        System.out.println("value is: " + value);
    }
}
//end ClassADriver
```

When running method `doIt()` in the `ClassADriver` class, the output will be:

 a) value is: 5
 b) value is: 6
 c) value is: 7
 d) doesn’t compile
 e) None of the above