C FORTRAN PROGRAM TO FIND MEAN OF N NUMBERS AND NUMBER OF VALUES GREATER THAN THE MEAN
DIMENSION A(99) ← array with fixed-size bounds
REAL MEAN ← variables beginning A-N are implicitly int.
READ(5),N
FORMAT(12)
READ(1,10)(A(I),I=1,N)
10 FORMAT(6F10.5)
SUM=0.0
DO 15 I=1,N
 SUM=SUM+A(I)
 MEAN=SUM/FLOAT(N)
 NUMBER=0
DO 20 I=1,N
 IF (A(I).LE. MEAN) GOTO 20
 NUMBER=NUMBER+1
20 CONTINUE
WRITE(2,25) MEAN,NUMBER
25 FORMAT(8H MEAN = ,F10.5,5X,20H NUMBER OVER MEAN = ,15)
STOP
END

begin comment this program is the ALGOL 60 version of finding the mean and the number of those greater than the mean;
integer n;
read(n);
begi real array a[1:n]; variable bounds for array
begin integer i, number, real sum, mean; implicit variable declarations, must be explicit
for i:= 1 step 1 until n do read (a[i]);
sum:= 0.0;
for i:= 1 step 1 until n do
 sum:= sum + a[i];
 mean:= sum/n;
 number:= 0;
for i:= 1 step 1 until n do
 if a[i] > mean then number:= number + 1;
 end
 write("MEAN =", mean, "NUMBER OVER MEAN =", number)
end

main()
/* this is the C version of the program to find the mean and the number of those greater than the mean */

{ float a[100], mean, sum;
/*the array a has 100 elements - a[0],.. a[99] */
int n, i, number;
scanf("%d", &n);
for(i = 0; i < n; i++) scanf("%f", &a[i]);
sum = 0.0;
for(i = 0; i < n; i++)
 sum += a[i];
mean = sum / n;
number = 0;
for(i = 0; i < n; i++)
 { if (a[i] > mean) number++;
 }
printf("MEAN = %.5f", mean);
printf("NUMBER OVER MEAN = %d", number);
}
1. IDENTIFICATION DIVISION.

PROGRAM-ID. INOUT.
*Comments are placed on a line which has an asterisk
*in the first column. It is a very good idea to put
*your NAME and the date of writing on your program.
*You should also include a brief description of the
*function of the program.
*This program reads in one file, extends each record,
*and writes out a new file.
*
2. ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 SELECT INP-FIL ASSIGN TO INFILE.
 SELECT OUT-FIL ASSIGN TO OUTFILE.

3. DATA DIVISION.
 FILE SECTION.

 FD INP-FIL
 LABEL RECORDS STANDARD
 DATA RECORD IS REC-IN.
 01 REC-IN.
 05 ALPHA-IN PIC A(4).
 05 SP-CH-IN PIC X(4).
 05 NUM-IN PIC 9(4).
 FD OUT-FIL
 LABEL RECORDS STANDARD
 DATA RECORD IS REC-OUT.
 01 REC-OUT.
 05 ALPHA-OUT PIC A(4).
 05 SP-CH-OUT PIC X(4).
 05 NUM-OUT PIC 9(4).
 05 EXTRAS PIC X(16).

 WORKING-STORAGE SECTION.

 01 EOF PIC X VALUE IS 'N'.

4. PROCEDURE DIVISION.

 AA.

 OPEN INPUT INP-FIL
 OPEN OUTPUT OUT-FIL

 PERFORM CC
 PERFORM BB THRU CC UNTIL EOF = 'Y'

 CLOSE INP-FIL, OUT-FIL
 DISPLAY "End of Run"
 STOP RUN.

 BB.

 MOVE REC-IN TO REC-OUT
 MOVE 'EXTRA CHARACTERS' TO EXTRAS
 WRITE REC-OUT.

 CC.

 READ INP-FIL
 AT END MOVE 'Y' TO EOF.

************** END OF LISTING **************
EXAMPLE: PROCEDURE OPTIONS (MAIN):
/* This is the PL/I version of the mean and the number of values greater than the mean */
GET LIST (N);
IF N > 0 THEN BEGIN;
DECLARE MEAN, A(N) DECIMAL FLOAT.
 SUM DEC FLOAT INITIAL(0), NUMBER FIXED INITIAL (0);
GET LIST (A);
 DO I = 1 TO N;
 SUM = SUM + A(I);
 END;
 MEAN = SUM/N;
 DO I = 1 TO N;
 IF A(I) > MEAN THEN
 NUMBER = NUMBER + 1;
 END: terminates inner & outer block
PUT LIST ('MEAN=', MEAN,
 'NUMBER GREATER THAN MEAN=', NUMBER);
END EXAMPLE:

10 REM THIS IS A BASIC PROGRAM FOR FINDING THE MEAN
20 DIM A(99)
30 INPUT N
40 FOR I = 1 TO N
50 INPUT A(I)
60 LET S = S + A(I)
70 NEXT I
80 LET M = S/N
90 LET K = 0
100 FOR I = 1 TO N
110 IF A(I) < M THEN 130
120 LET K = K + 1
130 NEXT I
140 PRINT "MEAN IS", MEAN
150 PRINT "NUMBER GREATER THAN MEAN IS", K
160 STOP
170 END
Functional programming example in a functional subset of Ada.
Finds difference between largest and smallest of 3 integers.

```ada
function max(a, b : integer) return integer is
begin
  if a > b then
    return a;
  else
    return b;
  end if;
end max;

function min(a, b : integer) return integer is
begin
  if a < b then
    return a;
  else
    return b;
  end if;
end min;

function difference(a, b, c : integer) return integer is
begin
  return max(a, max(b, c)) - min(a, min(b, c));
end difference;

with a possible call being:

put(difference(10, 4, 7));

result: 6
```
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).
female(pam).
males(tom).
males(bob).
females(liz).
females(ann).
females(pat).
males(jim).

offspring(Y, X) :-
parent(X, Y).

mother(X, Y) :-
parent(X, Y),
females(X).

grandparent(X, Z) :-
parent(X, Y),
parent(Y, Z).

sister(X, Y) :-
parent(Z, X),
parent(Z, Y),
females(X),
different(X, Y).

predecessor(X, Z) :-
parent(X, Y).

predecessor(X, Z) :-
parent(Y, X),
predecessor(Y, Z).

% Pam is a parent of Bob
% Pam is female
% Tom is male
% Y is an offspring of X if
% X is a parent of Y
% X is the mother of Y if
% X is a parent of Y and
% X is female
% X is a grandparent of Z if
% X is a parent of Y and
% Y is a parent of Z
% X is a sister of Y if
% X and Y have the same parent and
% X is female and
% X and Y are different
% Rule pr1: X is a predecessor of Z
% Rule pr2: X is a predecessor of Z

Figure 1.8 The family program.

(a) ?- parent(pam, bob).
(b) ?- mother(pam, bob).
(c) ?- grandparent(pam, ann).
(d) ?- grandparent(bob, jim). ← Backtracking here

Bratko, Prolog Programming